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Abstract

The most powerful genome-scale framework to model metabolism, flux balance analysis (FBA), is an evolutionary optimality
model. It hypothesizes selection upon a proposed optimality criterion in order to predict the set of internal fluxes that
would maximize fitness. Here we present a direct test of the optimality assumption underlying FBA by comparing the
central metabolic fluxes predicted by multiple criteria to changes measurable by a 13C-labeling method for experimentally-
evolved strains. We considered datasets for three Escherichia coli evolution experiments that varied in their length,
consistency of environment, and initial optimality. For ten populations that were evolved for 50,000 generations in glucose
minimal medium, we observed modest changes in relative fluxes that led to small, but significant decreases in optimality
and increased the distance to the predicted optimal flux distribution. In contrast, seven populations evolved on the poor
substrate lactate for 900 generations collectively became more optimal and had flux distributions that moved toward
predictions. For three pairs of central metabolic knockouts evolved on glucose for 600–800 generations, there was a balance
between cases where optimality and flux patterns moved toward or away from FBA predictions. Despite this variation in
predictability of changes in central metabolism, two generalities emerged. First, improved growth largely derived from
evolved increases in the rate of substrate use. Second, FBA predictions bore out well for the two experiments initiated with
ancestors with relatively sub-optimal yield, whereas those begun already quite optimal tended to move somewhat away
from predictions. These findings suggest that the tradeoff between rate and yield is surprisingly modest. The observed
positive correlation between rate and yield when adaptation initiated further from the optimum resulted in the ability of
FBA to use stoichiometric constraints to predict the evolution of metabolism despite selection for rate.
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Introduction

Systems biology is beginning to provide insight into how
interactions within complex networks give rise to the holistic
behavior of biological systems, and how natural selection would
shape these systems over the course of adaptation. Some
mathematical models are made with the goal of translating known
parameters of components of a small system into predictions of
their function. This approach has been used to predict behavior
ranging from the oscillation of natural or engineered genetic
regulatory networks [1] to flow through small metabolic networks
[2,3]. For larger, genome-scale networks there is insufficient
information to generate direct predictions in the same manner.
Instead, one can ask how the system should behave were it to have
already been selected to function optimally given tradeoffs
between different selective criteria. One use of mechanistically-
explicit optimality models is to consider the possible optimality of
current biological phenomena, such as the optimality of the

genetic code [4] or of the enzymatic properties of RuBisCO [5].
On the other hand, optimality models can also be used directly to
predict phenotypic changes in a system that would occur over the
course of adaptation, such as the evolution of virulence [6] or
enzyme expression [7].

The most broadly applied metabolic modeling framework, Flux
Balance Analysis (FBA), is a constraint-based evolutionary
optimality model. It quantitatively predicts flux through a
metabolic network that will maximize a given criterion thought
to represent prior natural selection [8]. At the heart of FBA is a
stoichiometric matrix, which is a mathematically transformed list
of mass-balanced biochemical reactions that fully describes the
known topology of the metabolic network of a cell (or other
system). It is further assumed that the cell is in a metabolic steady-
state, such that the sum of fluxes in and out of each internal
metabolite are balanced. As additional constraints are considered
(e.g., maximal flux values, irreversible reactions, biomass compo-
sition), this matrix can then be used to help define and constrain
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the space of feasible flux distributions in the cell. Within this
feasible space, linear programing is subsequently used to solve for
an optimality criterion -such as maximal biomass per substrate (see
below)- to identify a feasible flux distribution that permits that
optimum.

Evolutionary optimality models are powerful tools as they make
it possible to build intuition about the forces that shape biological
diversity. However, as has been pointed out most famously by
Gould and Lewontin, they can also be misleading and can foster
the wrong intuitions [9]. Optimality models make three assump-
tions: 1) selection (and not other processes) is the primary
evolutionary force shaping a trait of interest, 2) we can identify
the criterion upon which selection is acting, and 3) there are not
underlying constraints which prevent a trait from being optimized.
Optimality models are constructive for understanding the evolu-
tion of traits only to the extent that these assumptions can be
evaluated.

FBA provides an excellent framework to generate testable
hypotheses as to which selective criteria are appropriate for a given
set of conditions [10,11]. In environments such as batch culture,
selection acts directly upon growth rate -as well as lag and survival
in stationary phase- but not upon yield [12]. The most common
optimality criterion for FBA is commonly referred to as
maximizing growth rate [11]. Because this is performed by
constraining one (or occasionally multiple) substrate uptake rate
(S/time), this criterion is fully equivalent to predicting the
maximum yield (i.e., BM/S) under the given, user-supplied
substrate uptake rate. Since FBA cannot predict absolute rates of
substrate uptake used as the key constraint, the question as to
whether adaptation would optimize BM/S during batch culture
critically depends upon the correlation between growth rate and
yield. There are solid theoretical grounds to expect absolute limits
to the maximization of both rate and yield of reactions [13], but it
is often unclear how close biological systems are to these
constraints.

In addition to maximization of biomass, various other cellular
objectives have been suggested as alternative selective criteria.
These include optimal energetic (rather than biosynthetic)
efficiency whereby generation of ATP per substrate (ATP/S), or
the minimization of the sum of fluxes (BM/Sv or ATP/Sv). The

latter are based upon the rationale that enzymes are costly, and
thus a general relationship between enzyme levels and reaction
rates (although actually quite weak for any given enzyme, [14])
would lead to selection to minimize the total burden of enzymes
needed. Finally it has been suggested that selection acts
simultaneously upon multiple, competing criteria, leading cells to
inhabit an optimal tradeoff surface known as a Pareto optimum
[15,16]. This approach constructs a surface on which no single
criteria can be further increased without reducing another. It is
then assumed that evolution pushes biological systems to exist
somewhere on this surface. Data from a variety of experiments
suggested that cells operate near to the Pareto optimum defined by
BM/S, ATP/S, and minimization of Sv [15].

Tests of the predictive capacity of FBA have differed in two
ways depending upon: 1) whether there was known or assumed
adaptation to the substrate in question, and 2) whether tests were a
direct or indirect comparison of predicted internal fluxes to measured
fluxes (Table 1). The majority of these tests have been conducted
with Escherichia coli, and have assumed past selection on BM/S.
The direct tests of FBA compared predicted to observed flux
distributions (Figure 1) by taking advantage of empirical data
generated by 13C-labeling techniques [17]. Briefly, this method to
assay relative metabolic fluxes takes advantage of the fact that the
carbon atoms of the growth substrate are shuffled in different ways
by alternative metabolic pathways, and that these rearrangements
leave a signature in biomass. Using gas chromatography-mass
spectrometry (GC-MS) to determine the 13C-labeling of protein-
derived amino acids, it becomes possible to infer the flux splits in
the metabolic pathways leading to their synthesis [17–23]. Notable
amongst these tests was a quantitative assessment of the relative
merits of a series of optimality criteria (and constraints) in their
ability to predict the intracellular fluxes of E. coli measured in six
environments [11]. Data for wild-type cultures indicated that
ATP/Sv2, BM/S or ATP/S were more predictive depending
upon the growth condition; however, in all cases there was still
significant variation between predicted and measured fluxes.

A key advance in the use and testing of FBA came from the
realization that the best test of an optimality model is to examine
whether there is movement toward predicted optimal phenotypes
following adaptation under known experimental conditions
(Table 1). In a classic paper, populations of E. coli were adapted

Figure 1. Evolution of metabolic fluxes and measures of
optimality and predictability. We consider three ways to analyze
changes in metabolism that relate an ancestor (Anc, blue) to an evolved
isolate (Ei, green) in regard to an FBA-predicted optimum (Opt, red). A)
Evolution of metabolic fluxes can be evaluated from the perspective of
changes in proximity to the theoretical maximum for a given optimality
criterion (D% Optimality). B) A vector of flux ratios defines a position in
multi-dimensional flux space. One can then consider the relative
Euclidian distance of a given evolved population in this space from its
optimum (DEO) compared to that of an ancestor from its optimum (DAO;
plotted as log(DEO/DAO)). C) At the most detailed level, one can
compare the FBA-predicted value for a given flux ratio versus that
observed via 13C labeling.
doi:10.1371/journal.pcbi.1003091.g001

Author Summary

The most common method of modeling genome-scale
metabolism, flux balance analysis, involves using known
stoichiometry to define feasible metabolic states and then
choosing between these states by proposing that evolu-
tion has selected a metabolic flux that optimizes fitness.
But does evolution optimize metabolism, and if so, what
component of metabolism equates to fitness? We directly
tested the underlying assumption of stoichiometric opti-
mality by comparing predicted flux distributions with
changes in fluxes that occurred following experimental
evolution. Across three experiments ranging in length
from a few hundred to fifty thousand generations, we
found that substrate uptake – an input to the model –
always increased, but supposed optimality criteria such as
yield only increased sometimes. Despite this, there was a
clear trend. Highly optimal ancestors evolved slightly lower
yield in the course of increasing the overall rate, whereas
more sub-optimal strains were able to increase both. These
results suggest that flux balance analysis is capable of
predicting either the initial metabolic behavior of strains or
how they will evolve, but not both.

Suboptimal Central Metabolism Evolves as Predicted
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to various carbon substrates for 100–700 generations [24]. The
authors ran FBA for all pairwise constraints of substrate and
oxygen uptake to predict the maximal BM/S within those
constraints, and what metabolites might be excreted. Remarkably,
adaptation on five out of six substrates conformed to the
predictions, remaining on or evolving toward a ‘line of optimality’
representing the optimal oxygen to substrate ratio. For only one of
these substrates did the population move away from the predicted
optimality. A follow-up study further showed that the genes
expressed in evolved lines correspond to the fluxes predicted to be
active by FBA [25]. Since flux changes are only sometimes well-
correlated with gene expression [26], however, it remains unclear
whether FBA can predict the change in internal fluxes. Although
indirect, these studies have suggested that FBA might reasonably
capture the evolutionary forces acting on cellular physiology and
hence would be capable of predicting the outcome of evolution
[27].

To our knowledge there have been only two studies in which the
internal fluxes have been measured for both ancestral and evolved
strains grown in a constant environment with a single growth
substrate. Both involved rapid, short-term adaptation (,1,000
generations) of E. coli under conditions where the cultures were
kept in continual exponential growth in batch culture by using
frequent, large dilutions. Hua et al [28] measured fluxes following
adaptation to the poorly-utilized substrate lactate, while Fong et al
[20] measured fluxes following adaptation of a series of E. coli
strains with knockouts (KOs) deleting individual enzymes of major
branches of central carbon metabolism (e.g., glycolysis). Interest-
ingly, both studies found rather divergent changes in flux
distribution across replicates, and found that most improvement
in growth rate was the result of increases in substrate uptake.
These studies were not compared to FBA predictions, however,
thus it remains unclear whether the assumed optimality criteria
improved, or whether observed intracellular fluxes moved toward
those predicted with a genome-scale FBA model.

In terms of using experimental evolution to test optimality, the
cultures that have had the greatest time to adapt are those from
the E. coli long-term experimental evolution (LTEE) populations

that have been evolving in the Lenski laboratory for over 50,000
generations [29,30]. These twelve replicate populations have
evolved in minimal medium with glucose since 1988, experiencing
100-fold daily dilutions that result in a short lag phase, nearly
seven consecutive generations in exponential phase, and then
stationary phase. The LTEE experiment has enabled an
unprecedented examination of genotypic and phenotypic change
over an extended period of adaptation [29,31]. Despite starting
with a wild-type strain capable of rapid growth on glucose, all
populations have increased dramatically in both growth rate and
competitive fitness through adaptation in batch culture [32,33]. It
should be noted however, that batch culture inherently incorpo-
rates some non-steady state conditions and that improvements in
lag or survival may have had pleiotropic consequences for growth.
Despite this, here we ask how well FBA predictions align with the
evolved changes in these populations. If FBA is unable to predict
adaptation to single-nutrient, seasonal batch culture conditions we
will not be able to apply it to most laboratory environments, not to
mention the variable habitats experienced in nature.

The goal of the current work was to test whether the central
metabolic fluxes of replicate populations of E. coli with known
selective history in the laboratory evolved in a manner that is
predictable by FBA (Figure 1). We compared the fluxes inferred
from 13C labeling to the ranges predicted to permit optimal
performance and summarize these changes in three ways: the %
optimality possible given the inferred fluxes, the minimal distance in
flux space between the inferred fluxes and the optimal space of
distributions, and a flux-by-flux comparison to see how each flux
changed relative to predictions. Testing the ability of optimality
criteria to predict adaptation not only provides insight into the
mechanisms of evolution, but also represents a critical test of the
central optimality assumption of FBA. The LTEE lines began with
an ancestor operating at near-optimal BM/S, but the independent
populations evolved to use central metabolism less optimally. This
was reflected in both a small, but statistically significant, decrease
in the % optimal BM/S, and a corresponding increase in the
distance from the observed to optimal flux state. In contrast, the
seven lactate-evolved populations evolved to increase BM/S and

Table 1. Major approaches to test of FBA predictions depending upon whether there was known selection under experimental
conditions and whether there was direct measurement of internal fluxes.

Past adaptation
Test of internal
fluxes Major approaches Example papers

Assumed Indirect Growth rate and excretion. Varma & Palsson, 1994 [8]

Growth phenotypes or gene essentiality of knockouts. [41] Raghunathan et al, 2009 [41]

Direct Comparison of wild-type or knockout flux pattern to mutants in one
or more environments, usually using just BM/S or ATP/S as an
optimality criterion.

Emmerling et al, 2002 [42]

Explicit comparison of E. coli fluxes across environments to predictions
from multiple optimality criteria.

Schuetz et al, 2007 [11]

Known Indirect Uptake, excretion, and/or growth rates for evolved strains. Ibarra et al, 2002 [24]; Teusink et al, 2009 [43]

mRNA and protein levels correlated with predicted pathways in FBA. Fong et al, 2005 [44]; Lewis et al, 2010 [25]

Direct Flux changed during adaptation of E. coli evolved with key metabolic
knockouts or on the poor substrate lactate, but no comparison made
to FBA.

Fong et al, 2006 [20]; Hua et al, 2007 [28]

Flux changes during adaptation of E. coli to a fluctuating environment
compared to predictions of a Pareto surface.

Schuetz et al, 2012 [15]

Flux measurements following 50,000 generations of E. coli adaptation
and comparison of this and other datasets to FBA.

This study

doi:10.1371/journal.pcbi.1003091.t001

Suboptimal Central Metabolism Evolves as Predicted
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moved closer to an optimal flux distribution. The three pairs of
KOs had mixed results in terms of optimality and flux pattern.
Overall these results indicate that evolved increases in growth rate
largely resulted from increased substrate uptake. Furthermore,
ancestral strains operating far from optimal yield evolved as
suggested by FBA, whereas those close to the optimum experi-
enced a modest decrease in optimality and evolved to be further
from FBA predicted fluxes than their ancestor.

Results

Growth rate, cell dry weight and carbon uptake all
increased after 50,000 generations of adaptation on
glucose minimal medium

Prior to measuring internal metabolic fluxes, we first examined
key growth parameters for one isolate from the 50,000 generation
time-point for each of 10 independent LTEE populations (Table
S1). Growth rate increased by 45% on average (Table S1), which
is concordant with the 16% increase observed in these lines after
2,000 generations [32], and the 20% increase measured after
20,000 generations [33]. All evolved lines also increased their
glucose uptake rates (individually significant for 5 of 10 lines: A+3,
A22, A24, A25, A26; T-test, p,0.05, two-sample, equal
variance throughout unless noted otherwise, Table S1), with an
average increase of 18%. The cell dry weight per gram of glucose
also increased by an average of 20% while max OD600 increased
by 68%. This did not come from decreasing their excretion of
organic acids, however, as acetate production actually increased
by an average of 50%. No other excreted ions were observed
above our limit of detection of ,50 mM (Table S1).

LTEE isolates have modest, but significant changes to
their relative central metabolic flux distribution

In order to determine whether the improved performance of the
LTEE isolates was reflected in changes in the relative use of central
metabolic pathways, we used 13C-labeling of protein-derived
amino acids [17] to infer several key flux ratios in central carbon
metabolism (Figure 2A). Often the goal is to extrapolate from the
measured flux ratios to calculate the flux for each reaction in a
network [15,23]. For this study, however, we limit our discussion
and analyses to the flux ratios themselves, as these represent the
actual number of inferences from the 13C-labeling data and thus
each cellular branch-point is given equal weight (Text S1). It
should be noted that 13C data for the LTEE isolates were analyzed
with a program, FiatFlux [17], which is based on a simplified
model of central carbon metabolism. This program was used for
the previous study comparing alternate optimality criteria
mentioned above [11], as well as for obtaining the flux data
about the lactate [28] and KO [20] lines we analyze below.
Inferences with this commonly used program are less variable than
inferences based on larger models [34].

We uncovered statistically significant, but modest variation in
the flux ratios of evolved isolates relative to their ancestor
(Figure 2B, Table S2). In terms of the overall pattern, a
MANOVA test found that flux ratios changed significantly as a
function of population (Pillai’s Trace = 3.80, p,0.001, Figure S1).
Additionally, ANOVA tests on the flux ratios for individual lines
found at least one significantly different isolate (p,0.05) for all
ratios except two, and all lines had significant change in at least
one flux ratio. A joint linear regression of the populations found 22
fluxes that differed from the ancestor at a p#0.05. The False
Discovery Rate (FDR) metric suggests that 18 more significant
changes were found than expected by chance, whereas the more

conservative Tukey HSD test finds that 10 flux changes remain
significant.

A few patterns emerged in terms of the actual fluxes found to
have changed in evolved isolates. First, the most parallel change
was that a small, but significant portion of glucose was routed
through the Entner-Doudoroff pathway (Figure 2, flux 2). In all
but one case this was accompanied by a similar decrease in the
proportion of carbon flowing through the pentose-phosphate
pathway (flux 3). On the other hand, replicate lines evolved in
opposite directions for flux through glycolysis (flux 1), and for the
fluxes producing oxaloacetate from phosphoenolpyruvate (fluxes 4).
Additionally, in all cases there was no significant change in the
lower bound of production of pyruvate from malate via malic
enzyme (flux 6) across evolved isolates.

Long-term evolution on glucose did not increase any
optimality criterion

As a first step in testing the validity of different optimality criteria,
we asked whether the flux ratios observed in evolved isolates led to
increased or decreased performance with regard to each criterion
(Figure 1A). The ‘% optimality’ can be calculated by comparing the
maximum value of a criterion when the model was constrained with
the observed flux ratios and substrate uptake rate to the maximum
value of the criterion in the absence of the flux ratio constraints.
Note that because this metric simply compares values of given
optimality criteria rather than a particular set of flux ratios it is not
affected by the existence of alternate optima for some fluxes.

Figure 2. Evolved changes in central carbon metabolism for
the LTEE populations after 50,000 generations of adaptation
on glucose. A) The flux pathways measured for the LTEE lines are
denoted with numbers and red arrows. The genes knocked out in the
knockout data set and the entry point of lactate into the network are
both indicated. B) A heat map of the difference between evolved and
ancestral flux ratios from the LTEE populations. The right side indicates
flux ratios predicted for the ancestral line according to each optimality
criterion. The number of the flux ratio corresponds to the numbered
pathways in A. Single asterisks denote significant changes as calculated
by ANOVA, double asterisks are also significant by Tukey-HD.
doi:10.1371/journal.pcbi.1003091.g002

Suboptimal Central Metabolism Evolves as Predicted
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There was a slight (0.8%) but significant drop in the average
percent optimal biomass production (BM/S; T-test, p = 0.008),
with 9 of the 10 evolved lines decreasing relative to the ancestor
(Figure 3A). Turning to alternative optimality criteria, we first
found that ATP/S did not change significantly (Figure 3D),
though unlike all other measures throughout, the output was not
normally distributed (Shapiro-Wilk test of residuals, p = 0.002; for
rest see Figures S2 and S3). Correspondingly, significance for
changes in this criterion was tested with the non-parametric
Mann-Whitney-Wilcoxon Rank Sum Test (p = 0.79). BM/Sv and
ATP/Sv behaved qualitatively similarly to BM/S and ATP/S,
respectively, but as neither change was significant these results are
displayed only in supplementary material (Figure S4). Finally, we
calculated the nearest possible flux distribution for each evolved
isolate to the Pareto optimum, and found that 9 of 10 isolates were
further from an optimal tradeoff between criteria than the ancestor
(Figure S5).

In order to test the sensitivity of these findings to assumptions
made in using FBA, we compared the effect of changing the values
used for O2 limitation, maintenance energy, and the possible
change in biomass composition that would result from the
documented increase in average cell size [12]. None of these
modulations changed the qualitative results and generally the
default values outperformed the others (Figures S6 and S7).
Therefore, the conclusion that adaptation did not lead to an
increase in any optimality criterion for the LTEE populations
seems rather robust.

Long-term glucose evolution resulted in movement of
the flux distribution away from predicted states

We next examined whether the flux distributions we inferred for
the LTEE isolates moved toward (or away) from the flux
distribution predicted to result from optimizing each criterion.
We calculated the distance to the optimal fluxes for each evolved
isolate relative to the distance between the ancestor and optimality
(Figure 1B). Because the per-substrate criteria (e.g., BM/S, ATP/
S) had many equally-optimal flux distributions, we identified the
optimal solution that minimized the Euclidean distance from
observed flux ratios. Choosing the FBA solution that is the closest
to our empirical flux observations should, if anything, bias in favor
of FBA.

Beginning with the overall pattern of fluxes, we quantified the
log ratio of evolved to ancestral flux distance to their nearest
optimum (Figure 1B). Both BM/S and ATP/S predicted optima
in the opposite direction of the evolutionary flux movement, and
hence evolved lines ended up significantly farther from optima
than the ancestor (Figures 3B,E; S2; BM/S, T-test p = 0.0008;
ATP/S, T-test, p = 0.0004). In both cases the movement away
from the optimum was primarily driven by changes in the flux of
oxaloaceate from phosphoenolpyruvate.

Turning to individual flux ratios, no criterion fared particularly
well (Figure 2B, 3C,F). None correctly predicted the observed
increased flux through the Entner-Doudoroff pathway, nor the
trend of reduced oxaloacetate from phosphoenolpyruvate in
evolved lines.

Metabolic changes in E. coli evolved on the poor
substrate lactate were well-predicted by FBA using BM/S
as an optimality criterion

A second data set we considered was the seven populations of E.
coli that evolved on the poorly-utilized substrate lactate for ,900
generations [28]. These populations improved in growth rate and
cell dry weight substantially (112% and 50%, respectively) in
addition to increasing lactate uptake by 40% [28].

We found that adaptation to growth on lactate led to a
significant increase of 8% in the predicted percent optimal BM/S
(Figure 4A; T-test, p = 0.02), whereas the % optimal ATP/S
decreased significantly (Figure 4D; T-test, p = 0.01) by 7%. The %
optimality for BM/Sv and ATP/Sv again qualitatively followed
the respective per substrate criteria (Figure S4). Similarly, fluxes
moved closer to the state predicted by BM/S by an average of
20% (Figure 4B; T-test, p = 0.005), largely as the result of changes
in the predicted and observed flux to acetate (Figure 4C,F). In
contrast, they moved away from the state predicted by ATP/S
(Figure 4E; T-test, p = 0.0004). Additionally, 6 of the 7 lactate
populations evolved to be further from the Pareto optimal surface
than their ancestor (Figure S5).

E. coli central metabolic knockouts did not evolve in the
direction of FBA predictions

As a third test of whether strains evolve in a manner consistent
with FBA predictions, we considered the results from evolution on
glucose for KO populations with lesions in central metabolism (see
Figure 2A). These data come from two populations each initiated
with strains lacking phosphoglucose isomerase (Dpgi), triose-
phosphate isomerase (Dtpi) or phosphoenolpyruvate carboxylase
(Dppc) and evolved for ,800, ,600, and ,750 generations
respectively [20]. Considering the improvement of these popula-
tions jointly, they increased in both growth rate and glucose uptake
(172% and 157%), had large changes in central metabolic fluxes,
but were largely unchanged in dry cell weight (3%). For analyzing

Figure 3. Measures of optimality and predictability after
adaptation of LTEE populations to glucose for 50,000 gener-
ations. A,D) The % optimality of the ancestor (black) and evolved
isolates (grey, same order as Fig. 2); B,E) distance to optimal flux
distribution (plotted as log(DEO/DAO)); and C, F) comparison of
predicted to observed flux ratios for FBA-predictions based upon BM/
S (A–C) or ATP/S (D–F). Error bars represent standard errors of three
biological replicates.
doi:10.1371/journal.pcbi.1003091.g003

Suboptimal Central Metabolism Evolves as Predicted
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changes in their metabolic fluxes, however, we do not present
statistical tests of significance given that we only have two
observations for each of these three ancestors.

Our analysis of the flux data indicated that, for BM/S, Dpgi, and
Dtpi strains got worse while Dppc strains improved their %
optimality (Figure 5A). This pattern largely held for ATP/S as
well, though Dtpi strains showed essentially no change in %
optimality (Figure 5C). The KO data set is the only one in which
minimizing Sv led to qualitatively different behavior from the per
substrate analyses. Minimizing flux led to increases in the %
optimality for Dpgi and Dtpi when using BM/Sv as a criterion
(Figure S4).

Evolution pushed strains further away from optima in all cases
except Dpgi as predicted by BM/S (Figure 5B,D). Reduced
distance to the optima for Dpgi was driven by reduction in the flux
from oxaloacetate to phosphoenolpyruvate in evolved lines.
Finally, the two Dpgi evolved isolates evolved to be more Pareto
optimal, the Dtpi isolates were essentially equivalent to their
ancestor, and the Dppc isolates became less Pareto optimal (Figure
S5).

Discussion

Genome-scale metabolism is sufficiently complex that the
current state of the art in predictive models uses stoichiometry
and other constraints to define the space of possible flux patterns
and then suggests a given state that the cell would adopt if selection
had maximized a proposed optimality criterion. The application of
a mechanistic evolutionary optimality model to propose a solution
to an underdetermined physiological problem is elegant and has
been adopted broadly. However, there is a paucity of data testing
either the central assumption that intracellular fluxes are

optimized by a simple criterion, or which criterion best represents
the target of selection. Here we present an analysis of metabolic
evolution in the Lenski LTEE populations and make the first
direct comparison of observed flux evolution to genome-scale FBA
predictions.

Our analysis of the evolution of metabolic fluxes during 50,000
generations of adaptation of E. coli on glucose revealed changes in
both the absolute and relative fluxes. Concordant with faster
growth rates, we observed that all lines had increases in measured
glucose uptake. Beyond this, all populations altered the way in
which they utilize glucose, with significant changes in flux ratios
observed across the network of central carbon metabolism. The
most parallel changes in flux distribution were observed in the
glycolytic pathways with a universal small, but significant increase
in flux through the Entner-Doudoroff pathway, which was nearly
always accompanied by a decrease through the pentose phosphate
pathway. This is somewhat perplexing, as the Entner-Doudoroff
pathway provides less ATP than glycolysis and no important
biosynthetic intermediates. The Entner-Doudoroff pathway is
shorter than glycolysis, and hence potentially less enzymatically
costly. Indeed, what maintains the pathway in E. coli remains an
open question, though it has been observed to be upregulated in E.
coli during long-term starvation [35].

The major basis of improvement during selection upon growth
rate for the LTEE populations –as was observed for the lactate and
KO populations– came from increasing substrate uptake. We
found that the LTEE populations continued to increase their
growth rate over the 30,000 generations since it was last reported
[33]. Alternative measures of yield, such as cell dry weight and
OD600, also increased despite the slight decrease in efficiency of
biomass production by central metabolism. Cell dry weight
depends upon both BM/S in terms of carbon, but can also
change due to the relative biomass composition of elements such
as nitrogen or phosphorus. OD600 is even more indirect,

Figure 4. Measures of optimality and predictability after
adaptation to lactate for ,900 generations. A,D) The % optimality
of the ancestor (black) and evolved isolates (grey); B,E) distance to
optimal flux distribution (plotted as log(DEO/DAO)); and C, F) comparison
of predicted to observed flux ratios for FBA-predictions based upon BM/
S (A–C) or ATP/S (D–F).
doi:10.1371/journal.pcbi.1003091.g004

Figure 5. Measures of optimality and predictability after
adaptation of gene knockouts on glucose for ,600–800
generations. A,B) The % optimality of the ancestor (black) and
evolved isolates (grey); C,D) distance to optimal flux distribution for
FBA-predictions based upon BM/S (A,C) or ATP/S (B,D).
doi:10.1371/journal.pcbi.1003091.g005
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depending upon all of these factors as well as changes in optical
properties such as cell size, which is known to have increased in
the LTEE [32]. We only measured flux ratios in central carbon
metabolism, and thus would have missed significant adaptation
that happened in peripheral metabolic pathways. Alternatively,
either the bulk composition of biomass itself or the maintenance
energy might change. We addressed these latter two factors in
additional analyses (Figure S7), but neither of these factors
significantly alters results.

Data on the evolution of central metabolism for the LTEE
populations, combined with prior observations of flux evolution on
lactate or by a series of three KO strains provided the opportunity
to test several facets of whether the direction of evolutionary
change was consistent with FBA predictions.

Across experimental systems we ascertained which proposed
optimality criteria are most often consistent with the observed
evolution in central metabolism. On average across five different
ancestors, BM/S outperformed the other criteria in terms of either
increasing or going unchanged (Figure S8). The most dramatic
example was seen for the lactate-evolved populations, for which
BM/S increased while ATP/S decreased. The per flux criteria
(BM/Sv and ATP/Sv) behaved qualitatively the same as the per
substrate criteria in all but two of the cases (Dpgi and Dtpi). BM/Sv
outperformed BM/S in these two cases, but, for example, did not
significantly improve in the lactate populations. The data also
suggest that cultures quite often evolved to be further from their
Pareto optimum representing the space of optimal tradeoffs [15],
with 19 of 23 populations in total moving further from the Pareto
surface than their respective ancestral genotypes. These results
suggest that optimal biomass yield –which is the most commonly
utilized criterion for FBA– was the best overall stoichiometric
proxy for cultures where selection was directly upon growth rate. It
will be quite interesting to analyze populations grown in a manner
where yield (BM/S) is directly selected.

Overall, approximately half of the flux data were consistent with
FBA predictions, and half refuted the common assumption that
evolution acts to optimize efficiency; what accounts for this
discrepancy? The major factor that appears to account for this
difference is the initial degree of optimality for the ancestor of the

evolved lines (Figure 6). For the lactate and Dppc populations,
which began at approximately 80% and 90% optimality for BM/
S, all 9 total replicates increased in BM/S. On the other hand, 13
of 14 populations starting at or above 95% efficiency –LTEE and
the other two KOs– decreased in BM/S. A negative correlation
holds whether one performs a parametric statistical test (Pearson
correlation, p,0.0001) or a non-parametric Spearman correlation
coefficient (p,0.0001), though it should be noted that the strength
of the correlation is largely driven by the lactate data set.

The finding that selection on optimal efficiency depends on
distance to the optimum is both of practical and fundamental
interest. The analysis represents the first direct demonstration that
FBA can be used to predict changes in intracellular metabolism
that result from adaptation on a single carbon source. This positive
result comes with the caveat that strains must begin far from the
optimum. Systems initially operating at high yield –like the LTEE
and the Dpgi strains that both began above 98% optimal– may end
up evolving to be further from optimal than they began. In other
words, this suggests one can either predict the initial physiological
state or the direction of evolution, but not both.

What is perhaps the most remarkable about these findings is
that even for cultures with a negative correlation between rate and
yield, the tradeoff was quite modest. Small decreases in BM/S
were more than made up for by large increases in uptake, leading
to a net increase in growth rate despite mild antagonism. Given
that there is no direct selection upon yield during batch culture,
this perhaps suggests the existence of constraints upon the further
improvement of substrate uptake. As long as uptake is held
constant then changes in yield would directly translate into
changes in growth rate. As such, this would maintain purifying
selection upon yield, even over 50,000 generations. On the other
hand, the low efficiency ancestors were able to evolve both
improved substrate uptake and yield simultaneously.

Although FBA is typically applied as a practical tool to guide
experiments –and it has had some remarkable successes, such as
correctly predicting a rather unexpected new metabolic pathway
in some cancers [36]– it also serves as a quantitative, testable,
falsifiable model that connects physiology to evolution. The
interplay of optimality models and laboratory adaptation will be
critical as the field continues to move toward a fuller understand-
ing of the selection and constraints that act upon biochemical
networks.

Materials and Methods

Strains and growth conditions during selection
Escherichia coli B isolates were obtained from the Lenski LTEE

experiment [29] after 50,000 generations. Briefly, 12 populations
of E. coli were founded with either the arabinose-negative strain
REL606 (populations A21 to A26) or the arabinose-positive
derivative, REL607 (A+1 to A+6). These were evolved in 10 mL of
Davis-Mingioli minimal medium with 139 mM glucose (25 mg/L)
as a growth substrate in 50 mL flasks since 1988. These lines have
been cultured at 37uC while shaking at 120 rpm and have been
transferred daily via 1:100 dilutions (,6.64 net doublings per day).

The isolates analyzed in the current experiment consisted of the
ancestral line, REL606 [29], as well as the ‘A’ clone from 10 of the
12 lines frozen at 50,000 generations that were used in an earlier
paper (A21 = REL11330; A22 = REL11333; A24 = REL11336;
A25 = REL11339; A26 = REL11389; A+1 = 11392;
A+2 = REL11342; A+3 = REL11345; A+4 = REL11348,
A+5 = REL11367) [30]. The A22 clone used is from the ‘large’
lineage that has coexisted with a cross-feeding ‘small’ lineage for
tens of thousands of generations [37]. The isolate from the citrate-

Figure 6. Evolutionary change in % optimality versus initial %
optimality of the ancestor across data sets for BM/S. Error bars
represent standard errors between evolved populations.
doi:10.1371/journal.pcbi.1003091.g006
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consuming population A23 (REL11364) was not used because it
adapted to citrate consumption in addition to glucose [38]. The
A+6 isolate (REL11370) was excluded from analysis because it had
inconsistent growth, and gave irregular flux data. This population
was previously excluded from a study of growth rate vs. yield at
20,000 generations for similar reasons [13].

Measurement of key metabolic flux ratios
Flux measurements were obtained based on the methods of

Zamboni et al [17]. Evolved isolates were grown in 150 mL of
Davis-Mingioli minimal media with 139 mM glucose without
sodium citrate (excluded to ensure that it was not used as a
secondary carbon source by any line). In order to obtain
information from different parts of central metabolism, 13C-
labeling either utilized a 20:80 ratio of [U-13C]labeled:unlabeled
glucose or 100% [1-13C]glucose (Cambridge Isotope Laboratories,
Andover, MA). The ancestral REL606 was grown in 200 mL to
obtain sufficient cell material. At mid-log phase (60–80% max
OD) all cells were pelleted from the media, hydrolyzed overnight
in 6 M HCl, and dried. The dry cell material was then derivatized
for an hour at 85uC with 40 mL each of dimethylformamide and
N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide with 1% tert-
butyldimethyl-chlorosilane. The derivatized cell material was
injected into a Shimadzu QP2010 GCMS (Columbia, MD). The
injection source was 230uC. The oven was held at 160uC for
1 min, ramped to 310uC at 20uC min21, and finally held at 310uC
for 0.5 min. Flow rate was 1 mL min21 and split was 10. The
column was a 30 m Rxi-1ms (Restek, Bellefonte, PA). Three
technical and three biological replicates were run for each isolate.

Data files from the GC-MS were analyzed in FiatFlux [17], as
had been used for the lactate [28] and KO [20] populations we
also analyzed. The data conversion files were rewritten to load the
raw spectra produced by our MS. Following the established
protocol, uninformative amino acid fragments were removed.
Means for each biological replicate were calculated from the
average of three technical replicates. Shapiro-Wilk tests were used
to validate the assumption of normally-distributed errors for
estimated flux ratios for each strain (Figures S2, S3). Variance in
flux ratios was then analyzed with a MANOVA test using the
Pillai’s Trace metric with flux ratios entered as separate dependent
variables (Figure S1). Univariate ANOVA tests were also run to
investigate which of the measured flux ratios changed significantly
for individual strains.

The flux of oxaloacetate (OAA) from phosphoenolpyruvate
(PEP) was further estimated by a Monte-Carlo method to
determine the contribution of the glyoxylate shunt. The method
follows Waegeman et al, 2011 [23] and uses MATLAB code they
kindly provided. In short, average mass distribution vectors and
standard deviations were calculated from the measured samples.
The ‘normrand’ function was then used to randomly draw from
these mean distributions 1000 times. For each draw, a grid search
was used to find the flux ratios that best fit the mass distribution
vectors. Substantial variation was found for the fraction of labeled
CO2 and flux through the glyoxylate shunt, but in all cases there
was very strong support for the flux ratio of oxaloacetate from
phosphoenolpyruvate that had previously been calculated by
FiatFlux.

Physiological measurements of growth rate, cell dry
weight, glucose uptake and acetate excretion

Uptake and production of cell material were determined in a
separate set of experiments. In these experiments glucose
concentrations were increased ten-fold to 1.39 mM so that enough
of the compounds would be present to measure precisely. A

volume of 250 mL of overnight culture was inoculated into 50 mL
of media grown in a 250 mL flask at 225 rpm. Growth rate was
determined by fitting a logarithmic model to OD600 measure-
ments. A 10 mL sample was removed at early (OD600 of 0.090–
0.120) and late (OD600 of 0.275–0.400) log phase. Cells were
immediately removed from the media by passage through a
0.2 mM filter. Glucose concentrations were determined in the
spent media using a glucose oxidase assay kit (Sigma, Saint Louis,
MO). Acetate concentrations were determined by ion chromatog-
raphy with a Dionex ICS-200 RFIC. The flow rate was 1.5 ml/
min and the column temperature was 30uC. Cell dry weight
(CDW), was measured as the mass of the pellet from 100 mL of
fully-grown culture after overnight lyophilization. Three replicates
were assayed for each measurement.

Calculation of variation in flux ratios across evolved
isolates

The degree of parallelism between replicates in the evolution of
flux ratios was determined by calculating the coefficient of
variation in flux ratios. For each flux ratio the standard deviation
between evolved replicates was divided by the mean of that flux
ratio. This value was then averaged across all flux ratios. Values
close to zero indicate a high degree of similarity between evolved
lines.

Prediction of FBA optima
Flux analysis was carried out with a genome-scale model of E.

coli metabolism (iAF_1260 [39]). The model incorporates 2382
reactions and 1668 metabolites. Substrate uptake and excretion
were constrained to that observed, otherwise the default minimal
media environment was used. The lower bound on maintenance
energy was left at the default value of 8.9 mmol ATP/g/hr.
Oxygen uptake rates were set to those observed for the lactate
strains; however these data were not available for the REL or KO
strains. In these cases, oxygen uptake for the ancestor was scaled
across the previously observed range of 11.5–14.75 mmol/
gCDW/hr [11]. Previous work demonstrated that oxygen uptake
varies as a function of evolution, but that the ratio of substrate to
oxygen usage remained largely constant [24]. Oxygen constraints
for evolved lines were therefore set based on evolved glucose
uptake rates and the ancestral ratio of oxygen/glucose. Changing
the value of ancestral oxygen constraint, or the slope of constraint
line had little qualitative effect (Figure S6), so just the results based
on an ancestral uptake of 14.75 mmol/g/hr and a slope
maintaining the original oxygen/glucose rates are reported in
the text. Gene knockouts were simulated by constraining flux
through the missing gene to zero.

For all data sets we systematically tested the predictive ability of
four different optimality criteria: max biomass per unit substrate
(BM/S), max ATP per unit substrate (ATP/S), max biomass per
unit flux (BM/Sv) and max ATP per unit flux (ATP/Sv). These
criteria relate to the best performers in Schuetz et al 2007 [11] and
were defined as in that study. The per-substrate criteria
maximized the criterion and then subsequently chose a flux
distribution that minimized the difference from the observed
isolate ratios. This process always provides a flux distribution with
maximal production of ATP (or biomass). The per-flux criteria
optimize the ratio of ATP (or biomass) to the sum of the flux.
Optimizing this ratio leads to a single optimal flux solution that
often produces less than the maximal ATP (or biomass). For ATP
criteria, flux to excess ATP use (via maintenance energy) was
maximized while constraining the lower limit of biomass
production to the ancestral growth rate.
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Minimizing the distance between observed and predicted
optimal flux distributions was accomplished by minimizing a
distance term. Flux ratios can be constrained by adding a row to
the S matrix such that:

V2{R ! V1~0

Where Vn is the flux through reaction n and R is the ratio V2/V1.
To minimize distance between observed and predicted ratios the
equation becomes:

V2{R ! V1zD~0

V2{R ! V1{D~0

Where D represents distance from the observed ratio and is added
as two columns to the S matrix (and concomitant rows in the flux
vector). Biomass or ATP can be constrained to its maximum value
and then the flux distribution that is closest to observed values can
be calculated by running linear optimization minimizing D as the
objective function.

Comparison of experimental flux ratios to FBA-predicted
optima

We first tested whether flux ratios evolve to increase each
selective criterion. The optimal value of each criterion was
compared against the maximum value of the criterion when the
model was constrained to have the experimentally observed flux
ratios. Percent optimality, calculated as the constrained criterion
divided by optimal criterion, was determined for the ancestor and
evolved lines.

For the LTEE lines the constrained flux ratios were serine
through glycolysis, pyruvate through Entner-Doudoroff, oxaloac-
etate from phosphoenolpyruvate, phosphoenolpyruvate from oxalo-
acetate, and the pyruvate from malate. The ratios were calculated
following Fischer and Sauer 2003 [40]; the exact equations used
are provided in the supplementary material (Table S3). Each ratio
was constrained by adding a row to the S matrix that defined the
relationship between relevant fluxes (as described in the first
equation of the previous section). The ratio inferred for pyruvate
from malate was treated either as an absolute constraint or a lower
bound but because all optimality criteria push this value towards 0
the results were equivalent.

To propagate uncertainty in glucose uptake, acetate excretion
and flux ratios for the LTEE isolates, separate calculations of
properties such as BM/S were made for each of 3 biological
replicates, which themselves represented the average of 3
technical replicates. The mean and standard error for optimality
metrics was calculated for each strain from the biological
replicates.

Flux constraints for lactate and knockout data sets were
implemented as upper and lower bounds, because reported flux
ratios were relative to substrate uptake rather than other internal
fluxes. Lactate adaptation lines were constrained to have flux
ratios 65% of the values reported in Hua et al 2007 [28]. Gene
knockout lines were constrained with the flux ratios and errors
reported in Fong et al, 2006 [20].

To determine whether strains evolved towards predicted
optimal intracellular physiologies we used a standardized metric
to ask if evolved lines were closer to an optimal solution than the
ancestor. This distance metric was calculated as:

log DEO=DAOð Þ

where DEO was the distance of the evolved flux ratios from the
closest optimal solution, and DAO was the distance of the ancestor
from its closest optimal solution. Distances were calculated as
Euclidean distance between the flux ratios observed in each data
set and those predicted. It should be noted that because optimal
flux ratios change with substrate uptake the ancestral and evolved
optima were different points. The metric is 0 if the evolved isolate
distance has not changed relative to the ancestor, increasingly
positive as the evolved strain moves nearer an optimum, and
increasingly negative as it moves further away.

Pareto optimality
A Pareto optimal surface was calculated for each line by

constraining the substrate uptake rate and then doing a nested grid
search [15]. A grid search across the range of feasible biomass
values was executed. At each value of biomass a grid search of
ATP yields was carried out and the sum of fluxes was subsequently
minimized at every interval. Conservatively, for each isolate we
then determined the closest possible position to its optimal surface
given the observed constraints. Distance between the isolate and
the Pareto optimal surface was calculated from the difference in
standardized criteria.

Statistical tests
The normality assumption for physiological measurements for

the LTEE populations and optimality metrics for all data sets were
checked with the Shapiro-Wilk test on the residuals of the linear
model fitting the metric against strains. In all but one case the null
hypothesis that the distribution was normal could not be rejected
at p,0.05. The % optimality for the LTEE lines with ATP/S as
the optimality criterion was not normally distributed. Q-Q plots
are presented in the supplementary material (Figures S2 and S3).

For the LTEE lines ancestral versus evolved values were
compared with two-sided, two sample T-tests assuming equal
variance. For the non-normal ATP/S comparison a Mann-
Whitney Wilcoxon Rank Sum Test was used instead. For the
lactate populations only a single value was available for the
ancestor so two-sided, one-sample T-tests were performed testing
against the ancestral value as the mean.

Supporting Information

Figure S1 Covariance of fluxes inferred for the LTEE.
To determine whether there was a significant change in flux ratios
between populations of the LTEE we ran a MANOVA as
described in the text; however, to provide further insight into the
basis of the significant differences that we observed we present a
chart of the correlations between all fluxes. A) The value of the
correlation and the significance are presented on the bottom half
of the chart. B) The proportion of variation explained by each
eigenvector.
(PDF)

Figure S2 Normality tests for data associated with the
LTEE. Q-Q plots and Shapiro-Wilk values are displayed for
growth parameters, and flux ratios. Additionally, data is displayed
about the normality of % optimality and distance for different
criteria.
(PDF)

Figure S3 Normality tests for data associated with the
lactate strains. Q-Q plots and Shapiro-Wilk values are

Suboptimal Central Metabolism Evolves as Predicted

PLOS Computational Biology | www.ploscompbiol.org 9 June 2013 | Volume 9 | Issue 6 | e1003091



displayed for growth parameters, and flux ratios. Additionally,
data is displayed about the normality of % optimality and distance
for different criteria.
(PDF)

Figure S4 Measures of optimality based upon BM/Sv
or ATP/Sv for all data sets. (A,B,E,F,I,J) The % optimality of
the ancestor (black) and evolved isolates (grey); (C,D,G,H,K,L)
distance to optimal flux distribution for FBA-predictions (plotted
as log(DEO/DAO)). These were performed based upon BM/Sv
(A,C,E,G,I,K) or ATP/Sv (B,D,F,H,J,L). The data sets are LTEE
(A–D), lactate (E–H), and KO (I–L). Error bars for LTEE
represent standard errors of three biological replicates.
(PDF)

Figure S5 Measures of optimality based on maximizing
the tradeoff between BM, ATP and Sv for all data sets.
The Pareto distance of the ancestor (black) and evolved isolates
(grey) for LTEE (A), lactate (B), and KO (C). Error bars represent
standard errors of three biological replicates.
(PDF)

Figure S6 Implementation of oxygen constraints. Fol-
lowing the example of Schuetz et al 2007 [11] we varied the
ancestral oxygen uptake rate across the range reported in the
literature (11.5–14.75 mmol/g hr). Ibarra et al 2002 [24] report
that the ratio of oxygen to glucose uptake remains largely constant
as cells evolve. We tested the impact of varying ancestral oxygen/
glucose ratio as well as the slope of evolutionary change from 0.5
to 1.5. There was no significant difference in the change in %
optimality for either BM/S (A) or ATP/S (B) across this wide
range of parameter values. Results are not presented for an
ancestral oxygen uptake rate of 11.5 for ATP/S because this
constraint caused infeasible solutions for several evolved popula-
tions. Results obtained with the default values used throughout the
manuscript, an ancestral uptake of 14.75 mmol/g hr and a slope
of 1, are highlighted in red.
(PDF)

Figure S7 The effect that potential evolution of con-
straints would have on average change in % optimality
between ancestor and evolved lines. A) Lipid content was
altered in evolved lines from 80–120% of the default values. B)
Maintenance energy in evolved lines was altered from 50–150% of
the default value of 8.39 mmol/g hr. Analyses for ATP/S are not

shown, as setting a lower bound on maintenance energy has no
effect if ATP production is being maximized. Results for
simulations run with default (red) and altered (blue) constraints
are shown for the LTEE set when optimized for either BM/S or
ATP/S. Error bars represent standard errors between replicate
lines.
(PDF)

Figure S8 Average difference in % optimality between
ancestor and evolved lines for each data set for each
criterion. The criteria tested were BM/S (blue), ATP/S (red),
BM/Sv (green) and ATP/Sv (purple). Error bars represent
standard deviations of replicate lines.
(PDF)

Table S1 Growth parameters for ancestral and evolved
LTEE isolates.
(PDF)

Table S2 Experimentally determined flux ratios for
ancestral and evolved LTEE isolates. PEP through PPP is
an upper bound (ub); PYR from MAL is a lower bound (lb).
(PDF)

Text S1 Equations used to calculate flux ratios. The
notation v(x) represents the flux through reaction x of the iaf1260
genome-scale model of metabolism.
(PDF)
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